A magnesium-induced triplex pre-organizes the SAM-II riboswitch
نویسندگان
چکیده
Our 13C- and 1H-chemical exchange saturation transfer (CEST) experiments previously revealed a dynamic exchange between partially closed and open conformations of the SAM-II riboswitch in the absence of ligand. Here, all-atom structure-based molecular simulations, with the electrostatic effects of Manning counter-ion condensation and explicit magnesium ions are employed to calculate the folding free energy landscape of the SAM-II riboswitch. We use this analysis to predict that magnesium ions remodel the landscape, shifting the equilibrium away from the extended, partially unfolded state towards a compact, pre-organized conformation that resembles the ligand-bound state. Our CEST and SAXS experiments, at different magnesium ion concentrations, quantitatively confirm our simulation results, demonstrating that magnesium ions induce collapse and pre-organization. Agreement between theory and experiment bolsters microscopic interpretation of our simulations, which shows that triplex formation between helix P2b and loop L1 is highly sensitive to magnesium and plays a key role in pre-organization. Pre-organization of the SAM-II riboswitch allows rapid detection of ligand with high selectivity, which is important for biological function.
منابع مشابه
The expression platform and the aptamer: cooperativity between Mg2+ and ligand in the SAM-I riboswitch
Riboswitch operation involves the complex interplay between the aptamer domain and the expression platform. During transcription, these two domains compete against each other for shared sequence. In this study, we explore the cooperative effects of ligand binding and Magnesium interactions in the SAM-I riboswitch in the context of aptamer collapse and anti-terminator formation. Overall, our stu...
متن کاملA mechanism for S-adenosyl methionine assisted formation of a riboswitch conformation: a small molecule with a strong arm
The S-adenosylmethionine-1 (SAM-I) riboswitch mediates expression of proteins involved in sulfur metabolism via formation of alternative conformations in response to binding by SAM. Models for kinetic trapping of the RNA in the bound conformation require annealing of nonadjacent mRNA segments during a transcriptional pause. The entropic cost required to bring nonadjacent segments together shoul...
متن کاملAtomistic basis for the on–off signaling mechanism in SAM-II riboswitch
Many bacterial genes are controlled by metabolite sensing motifs known as riboswitches, normally located in the 5' un-translated region of their mRNAs. Small molecular metabolites bind to the aptamer domain of riboswitches with amazing specificity, modulating gene regulation in a feedback loop as a result of induced conformational changes in the expression platform. Here, we report the results ...
متن کاملStructural transitions and thermodynamics of a glycine-dependent riboswitch from Vibrio cholerae.
Riboswitches are complex folded RNA domains found in noncoding regions of mRNA that regulate gene expression upon small molecule binding. Recently, Breaker and coworkers reported a tandem aptamer riboswitch (VCI-II) that binds glycine cooperatively. Here, we use hydroxyl radical footprinting and small-angle X-ray scattering (SAXS) to study the conformations of this tandem aptamer as a function ...
متن کاملMagnesium fluctuations modulate RNA dynamics in the SAM-I riboswitch.
Experiments demonstrate that Mg(2+) is crucial for structure and function of RNA systems, yet the detailed molecular mechanism of Mg(2+) action on RNA is not well understood. We investigate the interplay between RNA and Mg(2+) at atomic resolution through ten 2-μs explicit solvent molecular dynamics simulations of the SAM-I riboswitch with varying ion concentrations. The structure, including th...
متن کامل